‘AD-A183 216 HETHODOLOGIES FOR CONCURRENT PROGRRHHING(U) TEXRS UNIY 171
T ARLINGTON DEPT OF COHPUTE SCIENCE J M
29 FEB 87 N09914-86-K-0182
UNCLASSIFIED

‘, s a'l ’ i y |‘3 "'!“

Kk 28 B25
[lL0 = 2 =
= m |_
¥ o

e

o, £

1.25

N
F

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.l‘ l‘.' ,lq

UH'H

N

'\‘_‘)4‘.5}-

' ""
- 'vﬂ-uv’:-’gh-‘:‘"

LT

OFFICE OF NAVAL RESEARCH
FINAL TECHNICAL REPORT

for DI _EILE_CopY

March 1, 1986 through February 28, 1987

for
CONTRACT N00014-86-K-0182
TASK NO. NR 4113625

AD-A183 216

METHODOLOGIES FOR CONCURRENT PROGRAMMING

PRINCIPAL INVESTIGATOR: Jayadev Misra
Computer Sciences Department
The University of Texas at Austin
Austin, Texas 78712

DTIC

ELECTE
81 4 1967
E

. eutoRE. adb

Reproduction in whole, or in part, is permitted for any purpose of the United States
Government.

This document has been approved for public release and sale; its distribution is unlim-
ited.

[+ 1 :h
- Accession Fer
E' i FTIS GRazr v
DTIC TAB &
Chapter 1 Unannounzeq g
Justificati,
[[] B'._‘
. Parallelism and Programming}2istrivution,
\ . Avauabiuty Codes
A Perspective Dist | gpaor /oF
Chapter Contents A"/
1. The Unity of the Programming Task 1
2. A Search for a Foundation of Parallel Programming 3
2.1 Nondeterminism 3
2.2 Absenceof ControlFlow 4
2.3 Synchrony and Asynchrony 4
2.4 Statesand Assignments 5
2.5 Extricating Proofs from Program Texts 6
2.6 Separation of Concerns: Correctness and Complexity 7
3. Introduction tothe Theory 8
3.1 UNITYPrograms « « « o « + « o+ 8
3.2 Separating Concerns: Programs and Implementations 8
3.3 Mapping Programs to Architectures 9
3.4 Modeling Conventional Programming
Language Constructs 10
4. An Example: Scheduling a Meeting 11
4.1 The Problem Statement 11
4.2 Operational, Process-Oriented Viewpoint 12
4.3 The UNITY Viewpolnt 13
5. Summary 000 s e e e e 17

1. The Unity of the Programming Task

This book is about parallel programs; however, this book is primarily about programs
and secondarily about parallelism. The diversity of architectures and consequent pro-
gramming constructs (send and receive, await, fork and join...) must be placed in the
proper perspective with respect to the unity of the programming task. By stressing
the differences, we are in danger of losing sight of the similarities. The central thesis
of this book is that the unity of the programming task is of primary importance; the
diversity is secondary.

The basic problem in programming is managing complexity. We cannot address
that problem as long as we lump together concerns about the core problem to be solved,
the language in which the program is to be written, and the hardware on which the

1-1

B AT AR AN R IR ORIt 1 v , :)
L A e N R G O o I ISR N D O U DX AL ARG

program is to execute. Program development should begin by focusing attention on
the problem to be solved and postponing considerations of architecture and language
constructs.

Some argue that in cases where language and hardware are specified as part of a
problem, concerns about the core problem, language, and hardware are inseparable.
For instance, programs executing on a distributed network of computers must employ
some form of message passing; in such cases concerns about message passing appear
inseparable from concerns about the core problem. Similarly, since the presence or
absence of primitives for process creation and termination in the programming language
influence the program, it appears that language issues are inseparable from others.
Despite these arguments, we maintain that it is not only possible but important to
separate these concerns; indeed it is even more important to do so for parallel programs
because parallel programs are less well understood than sequential programs.

Twenty-five years ago, many programs were designed to make optimum use of
some specific feature of the hardware. Programs were written to exploit a particular
machine language command or the number of bits in a computer word. Now, we know
that such optimizations are best left to the last stages of program design or left out
altogether. Today, parallel programs are designed much like sequential programs were
designed in the 1950’s: to exploit the message passing primitives of a language or the
network interconnection structure of an architecture. A quarter-century of experience
tells us that such optimizations are best postponed until the very end of program de-
velopment. We now know that a physicist who wishes to use the computer to study
some phenomenon in plasma physics, for instance, should not begin by asking whether
communicating sequential processes or shared-memory is to be used, any more than
whether the word size is 32 or 60 bits. Such questions have their place, but concerns
must be separated. The first concern is to design a solution to the problem; the later
concern is to implement the solution in a given language on a particular architecture.
Issues of performance on a specific architecture should be considered, but only at the
appropriate time.

Programs outlive the architectures for which they were designed initially. A pro-
gram designed for one machine will be called upon to execute efficiently on quite dis-
similar architectures. If program designs are tightly coupled to the machines of today,
program modifications for future architectures will be expensive. Experience suggests
that we should anticipate requests to modify our programs to keep pace with mod-
ifications in architecture—witness attempts to parallelize sequential programs. [t is
prudent to design a program for a flexible abstract model of a computer with the
intent of tailoring the program to suit future architectures.

An approach to exploiting new architectural features is to add features to the
computational model. However, a baroque abstract model of a computer only adds to
the complexity of programming. On the other hand, simple models such as the Turing
Machine do not provide the expressive power needed for program development. What
we desire is a model that is simple and has the expressive power necessary to permit

the refinement of specifications and programs to suit target architectures.

The emphasis on the unity of the programming task is a departure from the current
view of programming. Currently, programming is fragmented into subdisciplines, one
for each architectural form. Asynchronous distributed computing, in which component
processes interact by messages, is considered irrelevant to synchronous parallel com-
puting. Systolic arrays are viewed as hardware devices and, hence, traditional ideas of
program development are deemed inapplicable to their design.

The goal of this book is to show how programs may be developed in a systematic
manner for a variety of architectures and applications. A criticism of this book is that
its fundamental premise is wrong because programmers should not be concerned with
architecture—compilers should. Some styles of programming—e.g., functional and logic
programming—are preferred precisely because architecture is not their concern. Our
response to this criticism is twofold. First, programmers who are not concerned with
architecture should not have to concern themselves with it—they should stop early in
the program development process with a program which may or may not map efficiently
to the target architecture. Second, there are some problems in which programmers have
to be concerned with architecture either because the problem specifies the architecture
(e.g., the design of a distributed command and control system) or because performance
is critical; for these problems the refinement process is continued until efficient programs
for the target architectures are obtained.

2. A Search for a Foundation of Parallel Programming

We seek a small theory that is applicable to programming for a wide range of ar-
chitectures and applications. The issues that we consider central to such a theory
are: nondeterminism, absence of control flow, synchrony/asynchrony, states and as-
signments, proof systems that support program development by stepwise refinement
of specifications, and the decoupling of correctness from complexity, i.e., of programs
from architectures. These issues are elaborated on next.

2.1 Nondeterminism

How can we develop programs for a variety of architectures through a series of refine-
ments? By specifying program ezecution at an appropriate level of detail: by specifying
little in the early stages of design, and by specifying enough in the final stages to ensure
efficient ezecutions on target architectures. Specifying little about program execution
means that our programs may be nondeterministic. Different runs of the same program
may execute statements in different orders, consume different amounts of resources and
even produce different results.

Nondeterminism is useful in two ways. First, nondeterminism is employed to derive
simple programs, where simplicity is achieved by avoiding unnecessary determinism;

such programs may be optimized by limiting the nondeterminism, i.e., by disallowing
executions unsuitable for a given architecture. Second, some systems, e.g., operating
systems and delay-insensitive circuits, are inherently nondeterministic; programs that
represent such systems have to employ some nondeterministic constructs.

3.3 Absence of Control Flow

The notion of sequential control flow is pervasive in computing. Turing Machines
and von Neumann computers are examples of sequential devices. Flow charts and
early programming languages were based on sequential flow of control. Structured
programming retained sequential flow of control and advocated problem decomposition
based on sequencing of tasks. The prominence of sequential control flow is partly
due to historical reasons. Early computing devices and programs were understood
by simulating their executions sequentially. Many of the things we use daily, such as
recipes and instructions for filling out forms, are sequential; this may have influenced
programming languages and the abstractions used in program design.

The introduction of co-routines was an indication that some programs are better
understood through abstractions that are not related to control flow. A program struc-
tured as a set of processes is a further refinement: it admits multiple sequential flows
of control. However, processes are viewed as sequential entities—note the titles of two
classic papers in this area, “Cooperating Sequential Processes” in Dijkstra [1968] and
“Communicating Sequential Processes” in Hoare (1978]. This suggests that sequential
programming is the norm, and parallelism, the exception.

Control flow is not a unifying concept. Programs for different architectures employ
different forms of control flow. Program design at early stages should not be based on
considerations of control flow; it is a later concern. It is easier to restrict flow of control
in a program having few restrictions than to remove unnecessary restrictions from a

program having too many.

The issue of control flow has clouded several issues. Let us review one. Modularity
is generally accepted as a Good Thing. What is a module? A module implements
a set of related concerns, it has clean narrow interfaces, and the states of a system
when control flows into and out of the module are specified succinctly. Now, a clean,
narrow interface is one issue and control flow into and out of a module is another.
Why not separate them? In our program model, we retain the concept of module as a
part of a program that implements a set of related concerns. Yet, we have no notion of
contro] flow into and out of a module. Divorcing control flow from module construction
results in an unconventional view of modules and programming—though a useful one,
we believe, for the development of parallel programs.

2.3 Synchrony and Asynchrony

Synchronous and asynchronous events are at the core of any unified theory of parallel

1-4

|

ey ‘.QQ‘)?&.‘GC’)P)?M&?AMMMI&MJ

programming. For instance, all events in a systolic array are synchronous: at each
clock tick all processors in the array carry out a computational step. On the other
hand, a data network spanning the globe has no common clock; processes at different
nodes of the network execute steps asynchronously. Some systems have synchronous
' components interconnected by asynchronous channels—an example of such a system is
. an electronic circuit consisting of synchronous subcircuits interconnected by wires with
. arbitrary delays. Partitioning systems into synchronous and asynchronous varieties is
artificial; a theory should include synchrony and asynchrony as fundamental concepts.

2.4 States and Assignments

A formal model employed by computing scientists, control theorists, communication
engineers, circuit designers, and operations researchers (among others) is the state
transition system. Computing scientists use state transition models in studying for-
mal languages. Control theorists represent the systems they study as continuous or
discrete state transition models—a typical control problem is to determine an optimal
trajectory in a state space. Markov processes, employed by communication engineers
and operations researchers, are state transition systems. Communication engineers
represent communication protocols as state transition systems. Physical systems are
often described in terms of state transitions. Therefore, it appears reasonable to us to
propose a unifying theory of parallel programming based on state transition systems;
indeed, it is our hope that the theory will be helpful to engineers and natural scien-
tists as well as to programmers. However, treating a program as a state transition
system—a set of states, an initial state, and a state transition function—offers little
for a methodology of program development. Too much of the semantics of a problem
is lost when it is represented as a set of states and transitions. Therefore, we wish
to employ the theory of state transition systems while enjoying the representational
advantages of programming languages. One way of doing so is to employ variables and
assignments in the notation.

A starting point for the study of assignments is the following quote from Backus
[1978]:

“... the assignment statement splits programming into two
worlds. The first world comprises the right sides of assign-
ment statements. This is an orderly world of expressions,
a world that has useful algebraic properties (except that
those properties are often destroyed by side effects). It is
the world in which most useful computation takes place.

The second world of conventional programming languages
is the world of statements. The primary statement in that
world is the assignment statement itself. All the other state-
ments of the language exist in order to make it possible to

1-8

IONa(™ MWJWMaM\WMMW\J

perform & computation that must be based on this primi-
tive construct: the assignment statement.

This world of statements is a disorderly one, with few useful
mathematical properties. Structured programming can be
seen as & modest effort to introduce some order into this
chaotic world, but it accomplishes little in attacking the
fundamental problems created by the word-at-a-time von
Neumann style of programming, with its primitive use of
loops, subscripts, and branching flow of control.”

One cannot but agree that disorderly programming constructs are harmful. But
there is an orderly world of assignments. The problems of imperative programming
may be avoided while retaining assignments.

Word-at-a-time bottleneck: Multiple assignments allow assignments to several vari-
ables simultaneously; these variables may themselves be complex structures.

Control flow: Assignment can be divorced from control flow. We propose a program
model that has assignments but no control flow.

Mathematical propertiss: A program model based on assignments and without con-
trol flow has remarkably nice properties.

3.8 Extricating Proofs from Program Texts

One way of proving the correctness of a sequential program is to provide an annotation
of it; the proof consists of demonstrating that a predicate holds at a point in the text
of the program—thus the proof is inextricably intertwined with the program text. We
seek a proof system that allows the proof to be extricated from the program text. This
would allow us to develop and study a proof in its own right.

Much of program development in our methodology consists of refining specifica-
tions, i.e., adding detail to specifications. Given a problem specification, we begin by
proposing a general solution strategy. Usually the strategy is broad; it admits many
solutions. Next we give a specification of the solution strategy and prove that the
solution strategy (as specified) solves the problem (as specified). When we consider
a specific set of target architectures, we may choose to narrow the solution strategy,
which means refining the specification further. At each stage of strategy refinement, the
programmer is obliged to prove that the specification proposed is indeed a refinenient
of a specification proposed at an earlier step. The construction of a program is begun
only after the program has been specified in extensive detail. Usually, the proof that
a program fits the detailed specification is straightforward because much of the work
associated with proofs is carried out in earlier stages of stepwise refinement. We seek
methods of specification and proof that do not require a skeleton of the program text
to be proposed until the final stages of design. This is a departure from conventional

1-6

sequential program development, where it is quite common to propose a skeleton of
the program text early in the design, and where refinement of a specification proceeds
hand-in-hand with the addition of flesh to the program skeleton.

2.6 Separation of Concerns: Correctness and Complexity

A point of departure of our work from the conventional view of programming is this:
We attempt to decouple a program from its implementation. A program may be im-
plemented in many different ways—a program may be implemented on different ar-
chitectures, and even for a given computer, a program may be executed according to
different schedules. The correctness of a program is independent of the target architec-
ture and the manner in which the program is executed; by contrast, the efficiency of
a program execution depends on the architecture and manner of execution. Therefore,
we do not associate complexity measures with a program but rather with a program
and a mapping to a target computer. A mapping is a description of how programs
are to be executed on the target machine and a set of rules for computing complexity
measures for programs when executed on the given target machine. A programmer’s
task, given a specification and a target architecture, is to derive a program with its
proof, select a mapping that maps programs to the given target architecture, and then
evaluate complexity measures.

The operational model of a program—how a computer executes a program-—is
straightforward for programs written in conventional sequential imperative languages,
such as PASCAL, executing on conventional sequential machines. Indeed, many se-
quential imperative languages (so-called von Neumann languages) have been designed
so that the manner in which von Neumann machines execute programs, written in
these languages, is self-evident. The complexity measures (i.e., metrics of efficiency) of
a program written in such a language are the amounts of resources, such as time and
memory, required to execute the program on a von Neumann architecture. Usually,
when computing scientists refer to complexity measures of a program, they implicitly
assume a specific operational model of a specific architecture—in most cases the archi-
tecture is the traditional, sequential architecture and its abstract model is the Random
Access Machine or RAM.

The tradition of tightly coupling programming notation to architecture, inherited
- , from von Neumann languages and architectures, has been adopted in parallel pro-
- gramming as well. For instance, programmers writing in Communicating Sequential
Processes (CSP) notation usually have a specific architecture in mind, viz. an arthi-
tecture that consists of a set of von Neumann computers that communicate by means

of message passing.

In this book, the correctness of programs (in Chapter 3) is treated as a topic sepa-
rate from architectures and mappings (in Chapter 4). A brief discussion of mappings
is included in the following section.

AP N A S T A e N Cod e u ¥
e Y T A S S S A S S A AL S R L SRS L R S

3. Introduction to the Theor:-

In this book, we introduce a theory—a computational model and a proof system—called
UNITY. We choose to view our programs as Unbounded Nondeterministic Iterative
Transformations—hence the term UNITY. In the interest of brevity, the phrase “a
UNITY program” is preferred to “a program in unbounded nondeterministic iterative
transformation notation.” We are not proposing a programming language. We adopt
the minimum notational machinery to illustrate our ideas about programming. This
section is (even as introductions go) incomplete. A thorough description of notation
and proof rules appears in the next two chapters.

3.1 UNITY Programs

A program consists of a declaration of its variables, a specification of their initial values,
and a set of multiple assignment statements. A program execution starts from any
state satisfying the initial condition and goes on forever; in each step of execution some
assignment statement is selected nondeterministically and executed. Nondeterministic
selection is constrained by the following “fairness” rule: every statement is selected
infinitely often.

Our model of programs is simple; in fact it may appear too simple for effective
programming. We show in this book that our model is adequate for the development of
programs in general and parallel programs in particular. Now, we give an informal and
very incomplete description of how this model addresses some of the issues described
in section 2.

3.2 Separating Concerns: Programs and Implementations

A UNITY program describes what should be done in the sense that it specifies what
the initial state and the state transformations (i.e., the assignments) are. A UNITY
program does not specify precisely when an assignment should be executed—the only
restriction is a rather weak fairness constraint: every assignment is executed infinitely
often. Nor does a UNITY program specify where, i.e., on which processor in a multi-
processor system, an assignment is to be executed, or to which process an assignment
belongs. Also, a UNITY program does not specify how assignments are to be executed
or how an implementation may halt a program execution.
'

UNITY separates concerns between what on the one hand and when, where and
how on the other. The what is specified in a program, whereas the when, where and
how are specified in a mapping. By separating concerns in this way, a simple program-
ming notation is obtained that is appropriate for a wide variety of architectures. Of
course, this simplicity is achieved at the expense of making mappings immensely more
important and more complex than they are now.

1-8

*W&MM&?#AW&‘&NL\Z\I“)\T\(\T;WMM'\J

3.3 Mapping Programs to Architectures

In this section, we give a brief outline of mappings of UNITY programs to several ar-
chitectures. We consider the von Neumann architecture, synchronous shared-memory
multiprocessors, and asynchronous shared-memory multiprocessors. The description
given here is sufficient for understanding how the example programs of the next section
are to be executed on various architectures. The subject of mapping is treated in more
detail in Chapter 4. Though we describe mappings from UNITY programs to architec-
tures, UNITY programs can also be mapped to programs in conventional programming

languages.

A mapping to a von Neumann machine specifies the schedule for executing assign-
ments and the manner in which a program execution terminates. The implementation
of multiple assignments on sequential machines is straightforward and is not discussed
here. We propose a mapping in which an execution schedule is represented by a fi-
nite sequential list of assignments in which each assignment in the program appears at
least once. The computer executes this list of assignments repeatedly forever (but, see
below). We are obliged to prove that the schedule is fair, i.e., that every assignment
in the program is executed infinitely often. Since every assignment in the program
appears at least once in the list, and since the list is executed forever, it follows that
every assignment in the program is executed infinitely often.

Given that a UNITY program execution does not terminate, how do we represent
traditional programs whose executions do terminate (in the traditional sense)? We
regard termination as a feature of an implementation. A cleaner theory is obtained by
distinguishing program execution—an infinite sequence of statement executions—from
its implementation—a finite prefix of the sequence.

A state of a program is called a fized point if and only if execution of any statement
of the program, in this state, leaves the state unchanged. A predicate, called FP (for
fixed point), characterizes the fixed points of a program. It is the conjunction of the
equations that are obtained by replacing the assignment operator by equality in each
of the statements in the program. Therefore, FP holds if and only if values on left and
right sides of each assignment in the program are identical. Once FP holds, continued
execution leaves values of all variables unchanged, and therefore, it makes no difference
whether the execution continues or terminates. One way of implementing a program
is to halt the program after it reaches a fixed point.

A stable predicate or stable property of a program is a predicate that continues to
hold, once it holds. Thus, FP is a stable property. The detection of fixed points is
treated in Chapter 9, and the detection of general stable properties in Chapters 10 and
11.

In a synchronous shared-memory system, a fixed number of identical processors
share a common memory which can be read and written by any processor. There is a
common clock, where in each clock tick, every processor carries out precisely one step

TR TR T T T T VO TR LN L LA PR T TRt PLEEPRRY
OO MO A R AR MG A0

of computation. The synchrony inherent in a multiple assignment statement makes

it convenient to map such a statement to this architecture: each processor computes
the expression on the right side of the assignment corresponding to one variable and
then assigns the computed value to this variable. This architecture is also useful for
computing the value of an expression which is defined by an associative operator, such
as sum, minimum or maximum, applied to a sequence of data items. Details are given
in Chapter 4.

An asynchronous shared-memory multiprocessor consists of a fixed set of processors
and a common memory, but there is no common clock. If two processors access the
same memory location simultaneously, then their accesses are made in some arbitrary
order. A UNITY program can be mapped to such an architecture by partitioning the
statements of the program among the processors. In addition, a schedule of execution
for each processor should be specified that guarantees fairness of execution for the
partition. Observe that if execution for every partition is fair, then any fair interleaving
of these executions determines a fair execution of the entire program. Our suggested
mapping assumes a coarse grain of atomicity in the architecture: two statements are
not executed concurrently if one modifies a variable that the other one uses. Hence, the
effect of multiple processor execution is the same as a fair interleaving of their individual
executions. Mappings under finer grains of atomicity are considered in Chapter 4.
In that chapter we also show that an asynchronous multiprocessor can simulate a
synchronous multiprocessor by simulating the common clock; hence, programs for the
latter can be executed on the former.

To evaluate the efficiency of a program executed according to a given mapping,
it is necessary to describe the mapping—the data structures and the computational
steps—in detail. Descriptions of architectures and mappings can be made extremely
detailed. Memory caches, I/O devices and controllers can be described if it is necessary
to evaluate efficiency at that level of detail, but we shall not do so in this book because
we merely wish to emphasize the separation of concerns: programs are concerned with
what is to be done whereas mappings are concerned with the implementation details of
where, when, and how.

3.4 Modeling Conventional Programming Language Constructs

In this section, we show that conventional programming language constructs that.ex-
ploit different kinds of parallelism have simple counterparts in UNITY. This is not too
surprising because the UNITY model incorporates both synchrony—a multiple assign-
ment assigns to several variables synchronously—and asynchrony—nondeterministic
selection leaves unspecified the order of executions of statements.

A synchronous system is one in which there is a global clock variable that is in-
cremented with every state change. Multiple assignments model parallel synchronous
operations.

1-10

I3
(LI
.S

gl (sw PP PPPI] TaeB W

4

A statement of the form await B do S in an asynchronous shared-variable program
is encoded as a statement in our model which does not change the value of any variable
if B is false and otherwise has the same effect as S. A Petri net, another form of
asynchronous system, can be represented by a program in which a variable corresponds
to a place, the value of a variable is the number of markers in the corresponding place,
and a statement corresponds to a transition. The execution of a statement decreases
values of variables corresponding to its input places by 1 (provided they are all positive)
and increases values of variables corresponding to its output places by 1 in one multiple
assignment.

Asynchronous message-passing systems with first-in-first-out error-free channels
may be represented by encoding each channel as a variable whose value is a sequence of
messages (representing the sequence of messages in transit along the channel). Send-
ing a message is equivalent to appending the message to the end of the sequence and
receiving a message to removing the head of the sequence.

We cannot control the sequence in which statements are executed. However, by
using variables appropriately in conditional expressions, we can ensure that the execu-
tion of a statement has no effect (i.e., does not change the program state) unless the
statement execution occurs in a desired sequence.

4. An Example: Scheduling a Meeting

The goal of this example is to give the reader some idea of how we propose to develop
programs. Since the theory is presented only in the later chapters, the discussion here
is incomplete. The thesis of this book is unusual and the computational model even
more so; skeptical readers may want to get a rough idea of how we propose to design
programs before investing their time any further—this example is to satisfy their need.

4.1 The Problem Statement

The problem is to find the earliest meeting time acceptable to every member of a group
of people. Time is integer-valued and nonnegative. To keep notation simple, assume
that the group consists of three people called F,G, and H. Associated with persons
F,G, H are functions f, g, h (respectively) that map times to times. The meaning of f
is as follows (and the meanings of g, h follow by analogy). For any t, f(t) > t; person F
can meet at time f(t) and cannot meet at any time u where t < u < f(t). Thus, f(t) is
the earliest time at or after ¢ at which person F can meet. (Note: From the problem
description, ; is a monotone nondecreasing function of its argument and f(f(t)) = f(¢).
Also, t = f(t) means that F can meet at ¢.) Assume that there exists some common
meeting time z. In the interest of brevity we introduce a boolean function com (for
common meeting time) over nonnegative integers defined as follows:

com(t) = [t=f(t)=g(t) = h(t)]

1-11

Bt g

Problem Specification
Note: All variables r,t, 2, referred to in the specification, are nonnegative integers.
Given integer-valued functions f, g, h, where for all ¢ :

f)2t A git)2t A h(t)2t A {f,g9,h are monotone nondecreasing}

fU@)=f(1) A 9(9(t)) =9(t) A h(h(t)) = h(¢)

and given a z such that com(z), design a program that has the following as a stable
predicate:

r = min{t | com(t)}

Furthermore, the program establishes this stable predicate within a finite number of
steps of execution.

Discussion

There are many ways of attacking this problem. One approach is to structure
the solution around a set of processes, one process corresponding to each person; the
behavior of people provides guidelines for programming these processes. We propose
an alternate approach based on our theory. We describe both methods as applied to
this problem starting with the operational view. The discussion is, perforce, incomplete
because a thorough description of the theory is presented only in later chapters.

4.2 Operational, Process-Oriented Viewpoint

Here we describe only person F’s behavior; the behaviors of G and H follow by analogy.
Consider persons seated at a round table and a letter containing a proposed meeting
time (initially 0), passed around among them. Person F, upon receiving the letter with
time ¢, sets the proposed time to f(t) and passes the letter to the next person. If the
letter makes one complete round without a change in the proposed meeting time then
this time is the solution. ‘

Another strategy is to use a central coordinator to whom each person reports the
next time at which he can meet. The coordinator broadcasts ¢, the maximum of these
times, to all persons and F then sends f(t) back to the coordinator. These steps are
repeated until the coordinator receives identical values from all persons. .

Yet another solution is to divide the persons into two groups and recursively find
meeting times for each group. Then the maximum of these times is used as the next
estimate for repeating these steps, unless the two values are equal.

Another approach is to use a bidding scheme where an auctioneer calls out a pro-
posed meeting time t, starting at ¢t = 0, and F can raise the bid to f(t) (provided this
value exceeds t). The common meeting time is the final bid value, i.e., a value that

1-12

R S L LI LU LN A LA LA A . SIS PSPl L A vy 8t at L e e . T LR g
(ot ¢ L Y Lo 't gt} TN R N N T O OO

can be raised no further. The reader may develop many other solutions by casting
the problem in a real-world context. Different solutions are appropriate for different
architectures.

- 4.3 The UNITY Viewpoint

We take the specification as the starting point for program design. A number of heuris-
tics are given in later chapters for constructing programs from specifications. For this
example, we will merely propose programs and argue that they meet their specifica-
tions. Our next concern, after designing a program, is to refine it further so that it can
be mapped to a target architecture for efficient execution. We may have to consider
alternate refinements of the same program, or even alternate programs, if we are unable
to find a mapping with the desired efficiency.

-

A Simple Program

o - - - -

The problem specification suggests immediately the following program. The syn-
tax is as follows: the assignment statements are given under assign. Declarations of
variables have been omitted.

-

Program P1

e o 5

assign r := min{u | (0 <u<2z) A (com(u))}

end {P1}

-

This program’s correctness needs no argument. Now, we consider how best to imple-
ment P1 on different architectures.

oy

For a von Neumann machine, computation of the right side of the assignment—i.e., 3
finding the first u for which com(u) holds—can proceed by checking the various values
of u, from 0 to z, successively. The program is entirely straightforward. The number
of steps of execution is proportional to the value of r; in the worst case, it is O(z). X

For a parallel synchronous machine (see Chapter 4) the minimum over a set of size z
can be computed in O(log z) steps by O(z) processors and, in general, in O(z/k+log k)
steps by O(k) processors.

For parallel asynchronous shared-memory systems, a similar strategy can be em- H
ployed for the computation of the minimum. i !

Discussion 5

We showed a very simple program, the correctness of which is obvious from the v
specification. We described, informally, how the program could be mapped to different)
architectures. It is possible to refine this program so that the mappings correspond
more directly to its statements and variables. For instance, to describe the mapping to

1-13 -

BASAOAAAR WA
ORI NOCUNS MARRTOLN

an asynchronous message-passing system, we may refine this program by introducing
variables to represent communication channels and statements to simulate sending and
receiving from these channels; then, we can describe the mapping by specifying which
statements are to be executed by which processors and which channels connect which
pairs of processors.

We make some general observations about Program P1 independent of the archi-
tecture on which it is implemented. We note that com(u) has to be evaluated for every
u, 0 < u < z. This may be wasteful because from the problem statement we can deduce
that no u can be a common meeting time—i.e., com(u) does not hold—if t < u < f(t).
Therefore, it is not necessary to evaluate com(u) for any u in this interval. Such an
approach is taken in the next program.

Another Simple Program

The program that we propose is so straightforward that we give it without a prior
detailed discussion. The symbol] is used to separate the assignment statements in the
following program; the initial condition is specified under initially.

Program P2
initially r=0

assign r = f(r) | r := g(r) | r := A(r)
end {P2}

The program has three assignments: r := f(r),r = g(r), and r := h(r).
Computation proceeds by executing any one of the three assignments selected non-
deterministically. The selection obeys the fairness rule: every assignment is executed
infinitely often.

This program may be understood as follows. Initially, the proposed meeting time
is zero. Any one of the participants—F, G, or H—increases the value of the proposed
meeting time, if he cannot meet at that time, to the next time at which he can meet;
in this sense, this program is similar to the bidding scheme outlined in section 4.2. At
fixed point, r is a common meeting time.

Proof of Correctness

In the absence of a proof theory (which is developed in Chapter 3), the best we can
do is to sketch an informal proof. The proof, given next, can be made more concise by
employing the formalisms given later in the book. We divide the argument into three
parts.

(1) We claim that the following predicate is true at all points during program execution;
such a predicate is called an invariant.

invariant (0<r) A (forallu where 0 Su<r : -com(u))

In words, the invariant says that r is nonnegative and that there is no common
meeting time earlier than r. Using the specification and this invariant, it is seen
that r < z is always true, because there is a common meeting time at z.

To prove the invariant, we show that it is true initially and execution of any state-
ment preserves its truth. Initially, r = 0. Hence, the first conjunct in the invariant
is true and the second conjunct holds, vacuously. Now consider execution of the
statement r := f(r). We know before execution of this statement, from definition,
that F' cannot meet at any u, r < u < f(r). Hence, ~com(u) holds for all u,
r £ u < f(r). Also, from the invariant, we may assume that ~com(u) holds for all
u, 0 < u < r. Trivially, 0 < f(r). Therefore,

(0 < f(r)) A (for all u where 0 < u < f(r) :: —~com(u))

holds prior to execution of r := f(r). The effect of execution of this statement
is to set r to f(r). Replacing f(r) by r in the above predicate, we see that the
invariant continues to hold after execution of this statement.

Due to symmetry among the statements, similar arguments show that the invariant
is preserved by executing any statement.

(2) From the definition, FP for this program (which is the conjunction of the equations
obtained by replacing := by = in every statement) is

FP = r=f(r) Ar=g(r) A r=h(r).
From the definition of com(r) it follows that FP = com(r) .

Combining the results proved in parts (1) and (2), we claim that if Program P2’s
execution reaches a fixed point then the value of r is the earliest meeting time. Qur
remaining task is to show that every execution of Program P2 does, indeed, reach
a fixed point; this is shown below.

(3) We show that if ~FP A r = k holds at any point during computation then r > k
holds at some later point. Thus, r keeps on increasing as long as ~FP holds. We
showed in part (1) that r cannot increase beyond z. Therefore, eventually FP holds.
The proof of the claim that r increases if ~FP holds, is as follows. From the.FP
given in part (2),

~FP A (r=k) = k< f(k) V k<g(k) V k< h(k)

Suppose k < f(k) (similar reasoning applies for the other cases). From the fairness
requirement, the statement r := f(r) is executed some time later. Since the value
of r never decreases, just prior to execution of this statement, r > k (r may have
increased in the meantime) and hence,

O N AT OO WU

f(r) 2 f(k) > k.

The effect of the execution of the statement is to set r to f(r), and hence r increases
beyond k.

This completes the proof.
Mapping Program P3 to Various Architectures

We propose a mapping from Program P2 to a von Neumann machine. The mapping
is described by a list of assignments (see section 3.3). The list we propose is:

= f(r);r = g(r);r = h(r)

This list of assignments is executed repeatedly until a fixed point is detected—a fixed
point is detected when three consecutive assignments do not change the value of r.
This program corresponds to a token, containing r, being passed in a circular fashion
from F to G to H and then back to F, with each person setting r to the next time at
or after r at which he can meet. When the token passes by all three persons without
being modified, the program terminates.

Now suppose the functions f, g, h are such that it is more efficient to apply f twice
as often as g or h. Therefore we wish to repeatedly execute the following cycle: apply
f, then g, then f again and then h. So we employ a different mapping from P1 with
the execution schedule represented by the following list of assignments:

= f(r);r = g(r);r := f(r); r := h(r)

The point of showing two different mappings is to emphasize that P2 describes a family
of programs, each one corresponding to a different schedule. By proving P2, we have
proved the correctness of all members in the family. Observe that each member of the
family can also be represented as a UNITY program. For instance, the first schedule
corresponds to a program with a single assignment statement:

= h(g(f(r)))

and the second one to a program with the assignment statement:

= h(f(9(f(r)))) .

Program P2 can be implemented on asynchronous multiprocessors by partxtxonmg
its statements among the processors For instance, we may employ three processors,
each executing one statement, and r’s value resides in the common memory.

We show yet another member of this family of programs obtained according to a
different schedule. As in the first schedule, the three statements are executed in some
order in a “pass” and then the pass is repeated. However, the order in which the
statements are executed within a pass depends on the value of r before the pass starts.

o
- g

> This boek proposes a unifying theory for the development of programs for a variety of

For definiteness, suppose f(r) < g(r) < h(r) at the beginning of a pass. Then, the
statements are executed in the followmg

rm f(r);r = g(r); r := h(r).

It is easy to see that the effect of a pass is to set r to the maximum of f(r), g(r), h(r).
Hence, we have established the correctness of the following program.

Program P3

initially r=0

assign r := max(f(r),g(r), h(r))
end {P3}

This program is similar in spirit to the central coordinator scheme outlined in section
4.4. It is a suitable starting point for programming parallel synchronous multiproces-
sors. If the number of persons is N (N = 3 in this case), the maximum on the right
side of the assignment can be computed in O(log N) steps using O(N) processors.

Discussion

It is possible to develop yet other programs and show alternate schedules and
mappings to various architectures. We have attempted to illustrate only that certain
concerns, particularly dealing with architectures, may be ignored at higher levels of
design, and introduced at lower levels based on considerations of efficiency.

5. Summary
_th(UM e

architectures and applications. The computational model is unbounded nondetermin-
istic iterative transformations of the program state. ﬂn-ﬂuo-book. transformations of
the program state are represented by multiple assignments. The theory attempts to
decouple the programmer’s thinking about a program and its implementation on an
architecture; we attempt to separate the concerns of what from those of where, when,
and how. Details about implementations are considered in mappings of programs to
architectures. We hope to demonstrate that we can develop, specify and refine solution
strategies independent of architectures.

The utility of a new approach is suspect, especially when it is a radical departure
from the conventional. Therefore, we have made a conscientious effort to apply our ideas
to }? number of uch:te/cturu and application domains. Our expenenoe is encouraging.

e il AL ! N NS - -
Blblbulnhkrg(u g vy wmry ”(’ N A S

k L

UNITY was first discussed at the Conference on The Principles of Distributed

Computing in Vancouver, B.C. in August 1984 by Chandy {1984]. The basic idea has

(SIS N P LY NN TR » [P - -
R R IO SO ORI I W A Mos N W WL W W S Mo N

R 0 TV FUSI S A R RO A A

not changed since then. Applications of UNITY in the literature include termination
detection algorithms, Chandy and Misra [1986a), systolic programs, Chandy and Misra
[1986b], Snepscheut and Swenker [1987), and self stabilizing programs, Brown [1987].

The idea of modeling programs as state-transition systems is not new. Work of
Manna and Pnueli [1983], Pnueli {1981], and Lamport and Schneider [1984] on using
transition systems to model distributed systems are particularly relevant. Lynch and
Tuttle [1987] use transition systems to develop distributed programs by stepwise refine-
ment. A state based model of distributed dynamic programming is in Bertsekas [1982)].
A stimulus-response based approach for program specification is proposed in Parker et
al. [1980).

The idea of using mappings to implement programs on different architectures is not
new either. The work, since the 1960’s, of recognizing parallelism in sequential programs
is an instance of employing mappings to parallel architectures. The point of departure
of UNITY is to offer a different computational model from which to do the mapping.
Formal complexity models of architectures are in Aho et al. [1983], Goldschlager [1977],
Pippenger [1979], and Cook [1983]. A survey of concurrent programming constructs is
in Andrews and Schneider [1983].

The importance of nondeterminism was stressed by Dijkstra [1976], and he pro-
posed the nondeterministic construct—the guarded command. The guarded command
is used extensively in Hoare [1984] which contains a definitive treatment of program
structuring using Communicating Sequential Processes. A comprehensive treatment
of fairness is in Francez [1986]. In its use of nondeterminism, UNITY is similar to
expert-system languages such as OPS5, Brownston et al. [1985]. Milner [1983] con-
tains a calculi for synchrony and asynchrony. Finally, we wish to point out that some
of the initial motivation for UNITY came from difficulties encountered in using spread-
sheets, a notation that has not received much attention from the computing sciences
community.

Final Technical Report of

ONR Grant #N00014-86-K-0182

Summary of Work Accomplished

Under this grant we had proposed to study a novel form of programming which
includes assignment statement as the only construct. This form of programming was
originally suggested by K. Mani Chandy in his keynote address at the Conference on
Principles of Distributed Computing, Vancouver, August 1984. Since then, Chandy
and I have extensively explored this area. We are close to completion of a book on this
subject, Parallel Program Design: A Foundation (to be published by Addison-Wesley.
January 1988). The work accomplished has far exceeded the proposal and our initial
expectations. It has attracted attention of the leading computer scientists, and several
groups in the U.S.A. and Europe are already using this form of programming in various
application areas.

The major highlights of the programming system are as follows: A program consists
of a set of assignment statements. Each assignment statement assigns values to one

or more variables (in the latter case, it is known as a multiple assignment statement).
The program execution consists of repeating the following steps forever: choosing a
statement arbitrarily and executing it. The execution is constrained by the following
fairness criterion: in an infinite execution, every statement is selected infinitely often.

The proposal under the ONR Grant was to develop for this kind of programming,.

e a theory and,

¢ methodologies

We elaborate on these two aspects below. Here, we remark that in addition to work
in these areas, substantial understanding has been gained in applying the programining
technique to various areas of computer science.

The theory for our programming system consists of a logic which is used to mnake
statements about the program states that may arise during execution. Since our interest
is in both terminating and non terminating programs, our logic is meant to express
properties of both these types of systems. We introduce one operator of temporal
logic—unless—in our logic and we define two new operators—ensures and leads-to.
The first operator is adequate for stating all safety properties of the systems: the last
two are used for stating progress properties. An elaborate theory has been built up
around these operators.

1

L
The methodology of programming is based on suggesting various ways to com- .
pose program components to build a larger program. After extensive study, we have i
proposed two structuring mechanisms—union and superposition—that seem to be gen- o
erally useful for this form of programming. These structuring mechanisms are sur- "
prisingly powerful. The union mechanism is adequate for describing asynchronous .
shared-memory systems and networks of communicating processes. Superposition is v
the basis underlying program development in layers. We have developed the theories b
needed to reason about programs which are constructed by applying these structuring ::
mechanisms; using our theory, it is possible to deduce the properties of a constructed ¢
program from the properties of its components.
The work promises to be exciting. It shows an entirely novel way of approaching the :
problem of system design, based on sound formalisms and yet economical in practice. "
,
4.

T nd

Tas

5

a
X P iﬂﬁi@l\iﬁaﬁixﬁxﬂg

ONR NO00014-86-K-0182

PUBLICATIONS

'¢ 1. Jayadev Misra (with K. Mani Chandy), “Systolic Algorithms as Programs”, Dis-
tributed Computing, Vol. I, No. 3, August 1986 (177-183).

2. Jayadev Misra (with K. Mani Chandy), “How Processes Learn”, Distributed Com-
puting, Vol. I, No. 1, January 1986 (40-52).

3. K. Mani Chandy and Jayadev Misra, Parallel Program Design: A Foundation,
Addison-Wesley, to appear 1988. (The research results reported and acknowledged
in this book were partially supported by grants from ONR, AFOSR, and IBM.)

4. Edgar Knapp, “Deadlock Detection in Distributed Databases”, submitted to ACM
Computing Surveys, 1987.

Technical Report

A.Singh, J.Anderson, M.Gouda, “The Elusive Atomic Register Revisited”, (TR-86-30),
accepted for publication in the Proceedings of the Sixth ACM SIGACT-SIGOPS
Symposium on PODC, December 1986.

INVITED LECTURES

1. Jayadev Misra, “A Model for Nondeterministic Computations”, California Institute of
Technology, Pasadena, California, December 12, 1985.

2. Jayadev Misra, three-lecture series on “A Foundation of Programming Based on Non-
determinism”, Microelectronics & Computer Technology Corporation (MCC), Austin.
Texas, Spring 1986.

3. Jayadev Misra, “Toward a Unified View of Parallel Programming”, Carnegie-Mellon
University, Yale University, November 9-12, 1986.

GRADUATE STUDENTS SUPPORTED BY THIS GRANT

Mark Staskauskas Robert Comer
Ambuj Singh Rajive Bagrodia

[AN s PP PrSs QRN - WLl AR e WIS

t‘-'l.‘f L.‘

7/‘C

